
wipro.com

Enterprise Business Integration

 SDLC: Debug
 the cost

2

both equally dangerous: One, the product can

Experience has shown that the
cost of rework is over 50% in most
large projects. Can this re-work be
brought down?

pass testing with flying colors, but can turn out to

be a poor product because it was developed and

tested using wrong or inaccurate requirements;

two, it may fail testing completely, throwing up

scores of bugs. In both instances, rework will eat

into budgets and time to market.

Here is an example of ambiguity from a

requirements document, “Shut off the pump if

the water level remains above 100 meters for

more than 4 seconds.”1 From this requirement

statement it is not clear if the water level refers

to mean/median/root mean square/minimum.

The interpretation of the requirement is a

function of the reader’s background.

Much of the problems in requirements capture

have become acceptable norms in development.

But what if the requirements can be articulated in

a non-ambiguous manner to reduce the number

of bugs being introduced in development? In

other words, what if we could automate

requirements capture?

New tools are becoming available that run

through text (written and spoken) and figure out

ambiguities. Once these are flagged by the tool,

they can be taken back to the client and put into

more structured language. These tools surface

ambiguities and they can do it at scale and speed

– both of which are of critical importance in

today’s competitive environment.

The answer lies in preventing the bugs from

getting introduced into code. Drill this down one

more level and we see that a significant way to

reduce introducing bugs is to improve the

requirements capture process. Among the top

problems leading to bugs is poor requirement

capture. Experience says that common natural

language is easily the most pervasive way to

capture requirements. A very small percentage of

requirements are written in structured natural

language or in a formalized language. Using

common natural language leads to ambiguity,

miscommunication and frequent changes that

generate bugs in the development phase. One of

the key reasons for this state of affairs is that

developers never get to meet clients. They look at

requirement documents created by analysts.

Ultimately, the outcome can be at two extremes,

1. Detecting Ambiguities in Requirements Documents Using Inspections, Parnas, Asmis and Madey: https://pdfs.semanticscholar.org/fc2e/bbdbdbc21cff575a8dd511bbd8a14574335f.pdf

The real cost of poor
requirements capture

esting as a practice has made immense

strides. With the rise of DevOps and

Continuous Delivery methodologies, the

luxury of a separate test window has evaporated.

Development and testing have become

near-simultaneous activities. Testing has also

grown in sophistication. It now includes

automation, test data and environment

management and is witnessing the emergence of

quality engineering where testers have

development skills and developers have testing

skills. The focus of these testing methodologies

has been to improve the productivity of testers

and catch bugs faster. The faster a bug is caught,

the shorter is the time to market. This is

undoubtedly good. But nevertheless this leads to

re-work, because the bugs already exist.

Experience has shown that the cost of rework is

over 50% in most large projects. Can this re-work

be brought down? And if it can, where do you

start in the Software Development Lifecycle

(SDLC)?

About the author

We have the tools that automate requirements

gathering. It is the next step of coding that

needs equal attention. Code automation has not

been fully developed. Usable models, templates,

tools, libraries in common/target languages,

etc., that can automate development are still

viewed with caution. But some methodologies,

when used intelligently, can make developers

more productive and reduce the risk of bugs. The

challenge here is to figure out the automation

tools that work and those that don’t in specific

instances and environments.

In integration projects, the process of creating a

spreadsheet mapping spec (done by a business

analyst) and then converting that into code (by a

developer) amounts to major duplication of

effort. Typically, over 50% of interfaces

developed in an integration process are simple in

nature. In such instances, the simple interface

receives an XML (eXtensible Markup Language)

file that is run through an XSLT (Extensible

Stylesheet Language Transformations) which

transforms the input XML according to the logic

defined in the mapping spec. What if the XSLT

and other output files could be created using the

input and output XSDs (XML Schema Definition)?

The code that will be generated as a result is

then run through an automated testing

framework. We would then have an automated

assembly line for SDLC starting from

requirements gathering right up to the

deployment of tested code to the production

environments.

Such an approach will not always result in zero

errors. But over a period of time, using Machine

Learning, the system will know enough so as to

be almost 100% accurate.

Automatic code generation:
the new challenge

Thanks to faster computers and new insights
using Artificial Intelligence (AI), it is
becoming possible to create tools that write
code. The goal should be to use those that
automatically generate clean, non-verbose
and maintainable code.

There is no risk involved in trying these

methods. However, the real risk lies in not

using these methods: Organizations that do

not, will continue to pay the price of re-work

and lost market opportunities.

3

Gourisankar Mukherjee
Practice Manager, Wipro

Gouri helps clients and partners solve business

challenges by leveraging technology enablers and

solutions. He has over 20 years of experience in a

vast array of technologies including middleware,

core Java, Android and Open Source stacks. He is

particularly keen on exploring new technologies

and loves to get hands-on with them whenever the

opportunity presents itself. He can be reached at

gourisankar.mukherjee@wipro.com.

Wipro Limited
Doddakannelli, Sarjapur Road,

Bangalore-560 035,

India

Tel: +91 (80) 2844 0011

Fax: +91 (80) 2844 0256

wipro.com

Wipro Limited (NYSE: WIT,

BSE: 507685, NSE: WIPRO) is

a leading global information

technology, consulting and

business process services

company. We harness the

power of cognitive computing,

hyper-automation, robotics,

cloud, analytics and emerging

technologies to help our

clients adapt to the digital

world and make them

successful. A company

recognized globally for its

comprehensive portfolio of

services, strong commitment

to sustainability and good

corporate citizenship, we

have a dedicated workforce of

over 170,000, serving clients

across six continents.

Together, we discover ideas

and connect the dots to

build a better and a bold

new future.

For more information,

please write to us at

info@wipro.com

IND/BRD/MAY 2017-APR 2018

